Fast Direct Methods for Gaussian Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast methods for training Gaussian processes on large datasets

Gaussian process regression (GPR) is a non-parametric Bayesian technique for interpolating or fitting data. The main barrier to further uptake of this powerful tool rests in the computational costs associated with the matrices which arise when dealing with large datasets. Here, we derive some simple results which we have found useful for speeding up the learning stage in the GPR algorithm, and ...

متن کامل

Fast hierarchical Gaussian processes

While the framework of Gaussian process priors for functions is very flexible and has a number of advantages, its use within a fully Bayesian hierarchical modeling framework has been limited due to computational constraints. Most often, simple models are fit, with hyperparameters learned by maximum likelihood. But this approach understates the posterior uncertainty in inference. We consider pri...

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods

Gaussian processes (GPs) are a flexible class of methods with state of the art performance on spatial statistics applications. However, GPs require O(n) computations and O(n) storage, and popular GP kernels are typically limited to smoothing and interpolation. To address these difficulties, Kronecker methods have been used to exploit structure in the GP covariance matrix for scalability, while ...

متن کامل

Gaussian Processes and Fast Matrix-Vector Multiplies

Gaussian processes (GPs) provide a flexible framework for probabilistic regression. The necessary computations involve standard matrix operations. There have been several attempts to accelerate these operations based on fast kernel matrix-vector multiplications. By focussing on the simplest GP computation, corresponding to test-time predictions in kernel ridge regression, we conclude that simpl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2016

ISSN: 0162-8828,2160-9292

DOI: 10.1109/tpami.2015.2448083